YEAR 5: SPRING 2 - OCEAN SURVIVORS

SCIENCE: EARTH AND SPACE
UNDERSTAND, DESCRIBE AND EXPLAIN:

Our star - The Sun:
The sun is a star at the centre of our solar system. That is why it is called a solar system: The word 'solar' means 'relating to the sun'. The planets in our solar system stay together because the sun is so big that its gravity keeps us all locked in orbit.
The sun provides almost all the energy, light and heat needed on Earth mainly using hydrogen and helium. Energy is made at its core (centre). Around the core is a radiative zone, which carries the energy to the next layer - the convection zone. It takes about 170,000 years for the energy to move from the core to the convection zone. The photosphere is at the surface and the energy reaches here in large bubbles from the convection zone. From the surface, the energy escapes and some of it travels to Earth. It takes about $\mathbf{8}$ minutes for heat from the sun to reach us on Earth.

Did you know?

Surface temperature: $5505^{\circ} \mathrm{C}$
Distance to Earth: 149.6 million km
Radius: 696,342 km
Circumference: $4,366,813 \mathrm{~km}$ ($2,713,406$ miles)
Mass: 1,989,000,000,000,000,000,000,000,000,000kg
(About 1.3 million Earths could fit inside the Sun)

What is an orbit?

Every planet in the solar system moves anticlockwise around the Sun, following a curved path called an orbit. Although it looks like some of them are orbiting in a circle, each planet's orbit around the Sun is shaped like an ellipse.
When a planet makes one complete orbit around the Sun, this is counted as one year on that planet. The time that it takes each planet to orbit once around the Sun depends on how fast the planet is travelling and how far away it is from the Sun. This means that a year lasts for different lengths of time on different planets. Which planet do you think has the longest year?

The planets orbit the Sun because they are caught by the Sun's massive gravitational force.
 Without the pull of the Sun's gravity, the planets would no longer follow their paths around the Sun and would go flying off in a straight line into space. In the same way that each planet orbits the Sun, most planets are also orbited by smaller objects that are caught by the planet's gravity. For example, Earth is orbited by the moon. Some planets are orbited by lots of moons.

UNDERSTAND, DESCRIBE AND EXPLAIN:

To describe the movement of the Earth, and other planets, relative to the Sun in the solar system

To use the idea of the Earth's rotation to explain day and night and the apparent movement of the Sun across the sky

To describe the movement of the Moon relative to the Earth

Year	Orbit	Planets	Sun	Solar System	Spherical	Rocky	Gaseous
Day	Night	Rotate	Rotation	Axis	Gravity	Mass	Atmosphere
Moon	Natural satellite	New moon	Crescent moon	Half moon	Gibbous moon	Full moon	Months

What is a year?
A year is the amount of time it takes for a planet to orbit once around the Sun. On Earth, a full orbit of the Sun takes 365.26 days. This is why, every four years, we hold a 'leap year' of 366 days to make up for the quarter of a day that is missed the other years.
The time that it takes each planet to orbit once around the Sun depends on how fast the planet is travelling and how far away it is from the Sun. This means that a year lasts for different lengths of time on different planets.
Here is a table showing the length of a year on each planet in our Solar System:

As you can see, the further away the planet is from the Sun, the longer its year is. This is because its spherical orbit is much larger and so will take much longer.

What is a day?

Each planet also spins on its axis as it moves. A day is the amount of time it takes a planet to complete one full rotation on its axis. In one full day, we see the Sun rise, set and rise again. On Earth, one full rotation takes 24 hours.
It is daytime for the part of the planet that is facing the Sun and night-time for the part that is facing away. As some planets spin faster than others do, the length of a day can vary greatly between different planets. Here is a table showing the length of a day on each planet in our Solar
 System:

What about the Moon?

We now know that all planets orbit the Sun and that, because of the enormous mass and gravity of the Sun, everything in our Solar System is held in orbit. However, the planets are not the only things in orbit. Each planet has its own gravitational force. The greater the mass of the planet, the greater its gravitational force
Because of this gravitational pull, planets are able to keep other things in orbit such as atmosphere, satellites and moons. The Moon is the Earth's only natural satellite (an object orbiting a larger object). It takes the Moon approximately 28 Earth days to orbit the Earth once. We call this a lunar month and is where our use of months came from. Here is a table showing the number of moons each planet in our Solar System has:

The Phases of the Moon:
The Moon shines extremely brightly but is only reflecting the rays of the Sun. The Moon can not make its own light as it is not a star like the Sun. The Moon appears to disappear from sight during the day but, actually, the Moon is still there but harder to see because of the brightness of daytime. During its orbit, the angle between the Earth, Moon and Sun changes so the part of the Moon that is lit up can not always be seen by us on Earth. This is what gives us the phases of the moon and why it looks a different shape to us.

KEY ASSESSMENT QUESTIONS AND SCENARIOS:

EXS:

*Why are planets described as 'spherical bodies'?
*Can you name and order the planets in our Solar System?
*Explain why \qquad is classified as a planet but Pluto is not.
*What is the difference between a day and a year?
*Explain why and how a day is different on varying planets.
*Explain why and how a year is different on varying planets.
*How is a moon different to a planet?
*Explain how and why the moon appears to change shape in the sky.
*EXIT TASK: Explain what a day is using the key words rotate and axis. Explain what a year is using the key words orbit and gravity. Using the key words: phases, reflect, new, crescent, half, full and gibbous, describe the movement of the Moon in relation to the Earth.

GDS:

*Why do we have a leap year?
*Does \qquad take longer to orbit the sun than \qquad ? Why?
*Why does the Sun rise in the east and set in the west?
*Which other planets have moons? Why do you think that Mercury and Venus do not have moons?
*What is the difference between a moon and a planet? What would a moon need to do to become a planet?
*EXIT TASK: Using ALL of the key words above (in the boxes) at least once, explain day, night, months, years and the movement of the moon in relation to Earth.

